Geothermal Heat Pumps — Save Money, Decarbonize The Future

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

A New Analysis Shows that Geothermal Heat Pumps Can Decarbonize Buildings and the Grid, While Reducing Grid Transmission Needs and Saving Energy

WASHINGTON, D.C. — The U.S. Department of Energy (DOE) today announced results of an analysis highlighting that, deployed at mass scale, geothermal heat pumps (GHPs) could decarbonize heating and cooling and save energy in U.S. buildings while reducing the need for new grid transmission. The analysis finds that, coupled with building envelope improvements, retrofitting around 70% of U.S. buildings with GHPs could reduce electricity demand by as much as 13% by 2050 versus decarbonizing without GHPs. This reduction in demand would avoid as much as 24,500 miles of new grid transmission lines by 2050—enough to cross the continental United States eight times. Most GHP equipment for the U.S. market is manufactured domestically, so increasing GHP deployment can also expand domestic industry and create local jobs to install and maintain the systems.

“Geothermal heat pumps offer enormous value for the nation’s energy future,” said Alejandro Moreno, Associate Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy. “This report confirms that geothermal heat pumps are a ready-made strategy for decarbonizing our buildings while reducing the need for new electricity generation and transmission, and bringing energy savings to Americans nationwide—all while creating U.S. jobs.”

Conducted by experts at Oak Ridge National Laboratory and the National Renewable Energy Laboratory and funded by DOE’s Geothermal Technologies Office (GTO), the analysis finds that mass GHP deployment paired with building envelope improvements creates value for the grid by reducing the need for generation capacity, storage, and transmission compared to other pathways. This means GHPs could improve power-grid reliability and provide benefits to all electricity consumers, even those who cannot install GHPs themselves.

In addition, large-scale GHP deployment could eliminate more than seven gigatons of carbon, even in the absence of any decarbonization policy. Additional efficiency measures such as building weatherization can further increase benefits for energy users and the electricity grid.

GHPs are used to heat and cool individual homes or businesses as well as networks of buildings such as college campuses. They can be used in all climates and in both urban and rural environments, and can be implemented in new construction or retrofitted to existing buildings.

Visit GTO’s website to learn more about the report and GHPs. Explore GTO’s research to expand deployment of GHPs at individual and community scales through its Low-Temperature and Coproduced Resources program.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

CleanTechnica Holiday Wish Book

Holiday Wish Book Cover

Click to download.

Our Latest EVObsession Video

I don’t like paywalls. You don’t like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we’ve decided to completely nix paywalls here at CleanTechnica. But…


Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!


Thank you!



CleanTechnica uses affiliate links. See our policy here.

Latest articles


Related articles

Leave a reply

Please enter your comment!
Please enter your name here